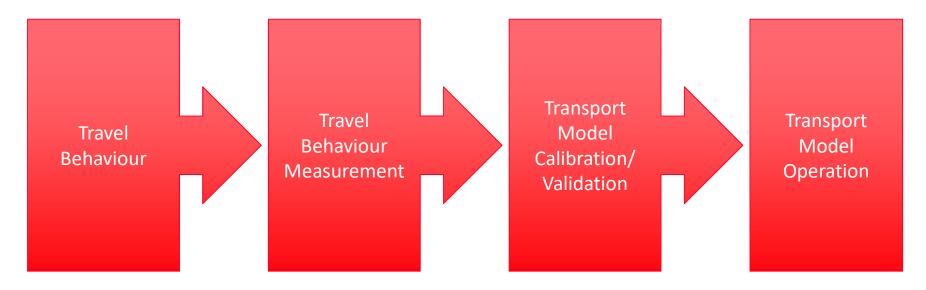


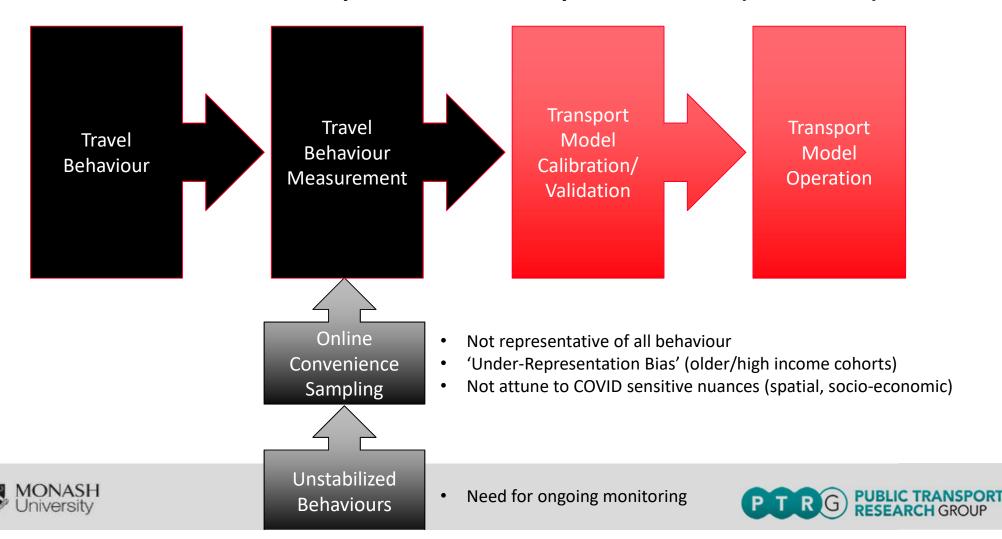
Tuesday 20th April 2021 Modelling World International

COVID: Opportunities and challenges for modelling – a southern hemisphere perspective


Prof Graham Currie FTSE
Public Transport Research Group
Monash Institute of Transport Studies
Monash University, Australia

The Transport Modelling process is the same with and without COVID...

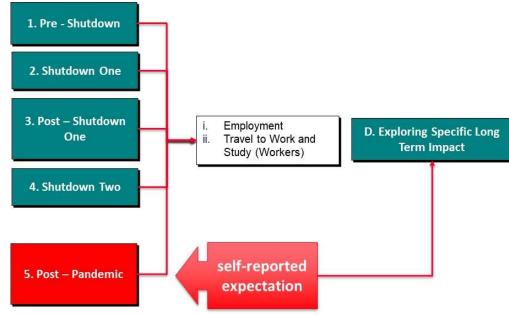
The Transport Model Development Process (Pre-Covid)



...the COVID modelling challenge is that we are using the wrong methods to measure travel behaviour; and that behaviours have not stabalised.

The Transport Model Development Process (Post-Covid)

We developed an online survey to measure POST-COVID travel behaviour with a representative sample to remove 'under representation bias' – Here is what we found about travel behaviour


Online Panel Survey Questionnaire - Areas Covered

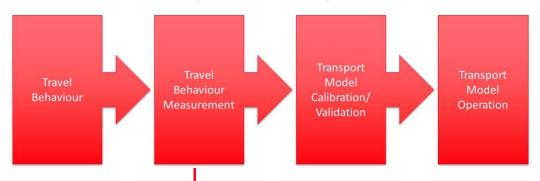
Pre-Stratification Sampling

Sample Frame
Targets under
represented
Cohorts;
income and
age

	S	ample	Frame	1		
	INNE	R MELBOU	RNE (n=700	0)		
	Annual Personal Income, Before Tax					
	Nil Income	Less than	Between	More than	Total	
Age Group	Target	Target	Target	Target	Total Target	
18-29	53	96	83	16	248	
30 - 44	12	43	86	79	220	
45 and over	12	89	62	69	232	
Total	77	228	231	164	700	
	MIDDL	E MELBOL	JRNE (n=70	00)		
	Annual Personal Income , Before Tax Total					
Age Group	Target	Target	Target	Target	Total Target	
18-35	37	73	92	36	238	
36-54	17	43	87	90	237	
55 and over	18	107	64	37	226	
Total	72	223	243	163	701	
					•	
	OUTE	R MELBOL	JRNE (n=70	0)		
	Annual Personal Income , Before Tax					
	Nil Income	Less than	Between	More than	Total	
Age Group	Target	Target	Target	Target	Total Target	
18-35	26	87	97	24	234	
36-53	15	64	101	56	236	
54 and over	18	122	65	25	230	
Total	59	273	263	105	700	
		GRAND T				
	Annual Person Income, Before Tax					
	Nil Income	INCOME 1	INCOME 2	INCOME 3	Total	
Age Group	Target	Target	Target	Target	Total Target	
AGE GROUP 1	116	256	272	76	720	
				205	693	
AGE GROUP 2	44	150	274	225	093	
AGE GROUP 3	44 48	150 318	274 191	131	688	

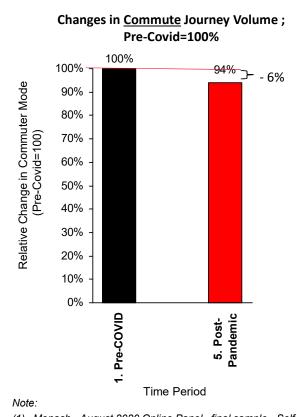
Questionnaire Approach

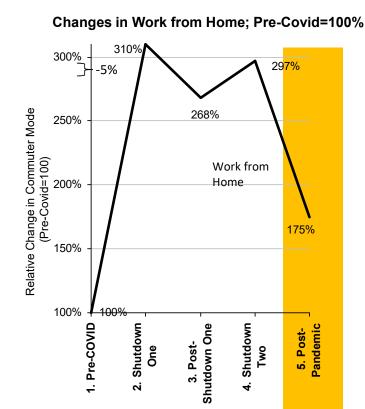
Note:

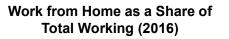

- (1) Quotas in a sample aim to ensure representation of the community with respect to key/influential demographic and spatial criteria
- (2) Statistical accuracy minimums are a sample of 600 to achieve a 95% confidence that any result is within 4% standard error.

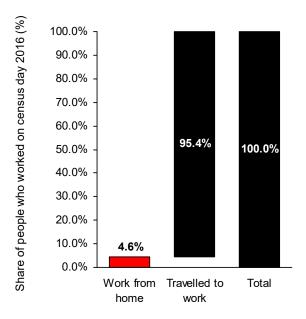
There are four KEY new behaviours for POST-COVID modelling

The Transport Model Development Process


- 1. Commute Trip REDUCTIONS due to increased WORK FROM HOME
- 2. MODE SHIFT from Transit to Car Driving due to INFECTION FEAR
- 3. SPATIAL Variations in the Above
- 4. SOCIO-ECONOMIC Variations in the Above





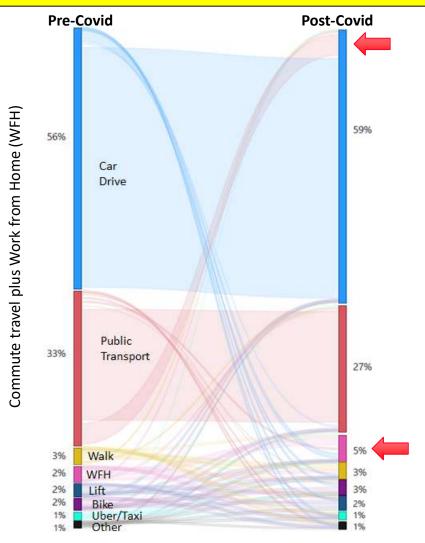

POST COVID total JTW travel declines by 6% - mainly due to increased WFH – the scale of shift is small (6%) because WFH is small as a share of work

1. Commute Trip REDUCTIONS - due to increased WORK FROM HOME

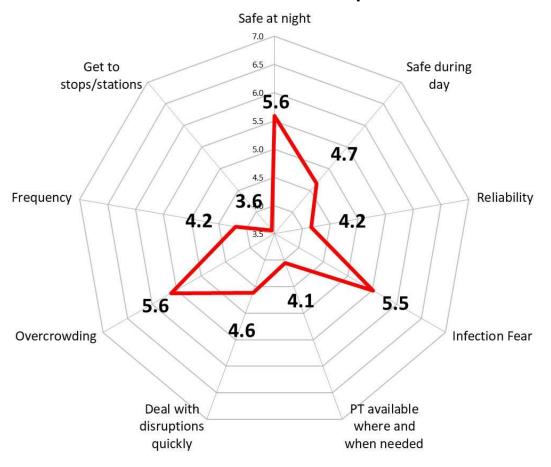
Type of Work Travel

(1) Monash - August 2020 Online Panel –final sample - Self reported activity participation volume per week

(2) Weighted sample; representative of total Melbourne travel

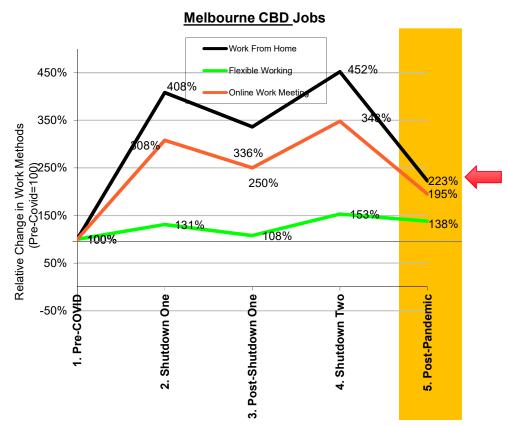


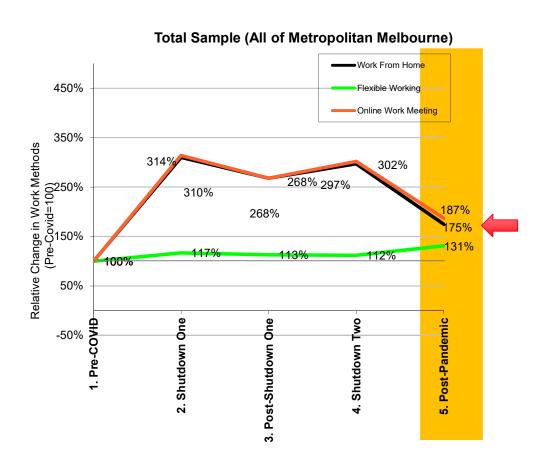
Source:: Australian Bureau of Statistics, 2016 Census Journey to Work



POST COVID JTW travel has a mode shift from transit to car-drive – this is caused by 'residual infection fear'

2. MODE SHIFT from Transit to Car Driving – due to INFECTION FEAR

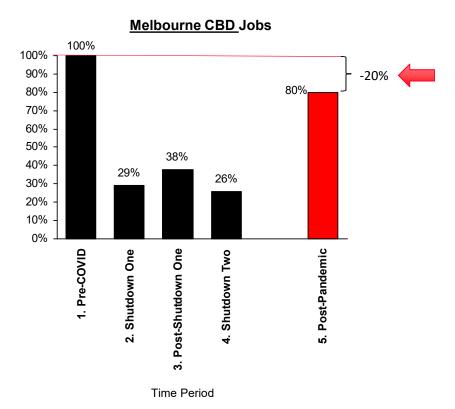


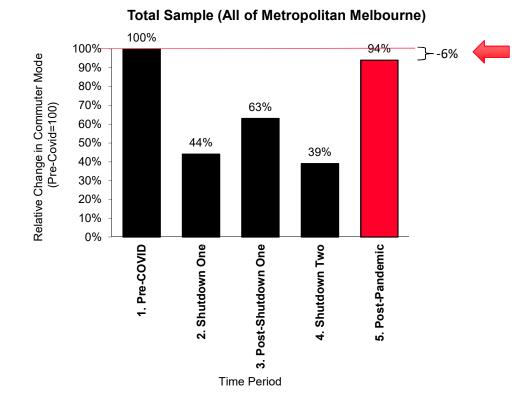

Perceived Concerns About Public Transport – Performance Rating

Work from Home is MUCH more common for CBD workers; Post Pandemic WFH is expected to more than double (+123%) compared to pre-covid, much higher than for Melb as a whole (+75%)

3. SPATIAL Variations in COVID Behaviours

Note:


(1) Monash – August 2020 Online Panel Survey – final sample - Self reported activity participation volume per week (2) Weighted sample; representative of total Melbourne travel

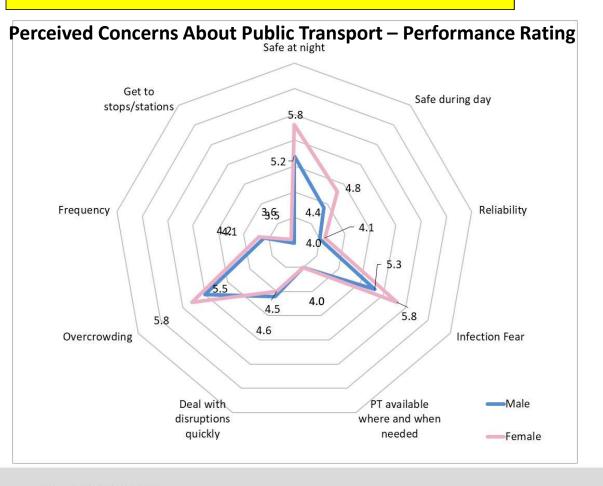


Respondents say CBD COMMUTE will reduce more than the rest of Melbourne; Post Pandemic a 20% decline in CBD COMMUTE is self estimated - much larger than for Melbourne as a whole (6%)

3. SPATIAL Variations in COVID Behaviours

Note:

- (1) Monash August 2020 Online Panel final sample Self reported CBD travel to work volume per week
- Weighted sample; representative of total Melbourne travel



By <u>Melbourne Region</u>; there is a significantly different set of MODE SHIFT from Inner Area residents fro transit to car drive/walk and WFH; Middle/Outer shifts are much smaller

Infection Fear is Gender Biased. Work from Home shifts are larger for White Collar workers and High Income Groups

4. SOCIO-ECONOMIC Variations in COVID Behaviours

Socio-Economic Patterns of COVID Behavior Change

- Female respondents demonstrated slightly higher post pandemic commute reductions than male respondents
- ▶ Income was found to have significant variations in post pandemic commute volume (Kruskal Wallis Test, H (7) = 48.328, P=0.000).
 - In general higher income groups self-report significantly higher reductions in commuting postpandemic compared to their commuting before COVID
 - income '\$1,870-\$3,200'; -22.6% and income '\$3,200 or more'; -23.9%).
 - Lower income groups (<\$1,870) between -0.36% and
 -3.5% for cohorts with larger samples).
- We also found a statistically significant difference in post pandemic commuter reductions for white collar workers (Mann Whitney U test, U=62846, P=0.000).
 - White collar workers had an average -12.5% reduction in commute volume after the pandemic while
 - other workers had an average of -2.8%.

Please reach out for more information

graham.currie@monash.edu

Taru Jain

Laura Aston

W: ptrg.info

