

Planning Institute of Australia Victoria Briefing Friday 13th November

Covid-19 Long Term Travel Impacts Study Study Outline

Prof Graham Currie FTSE, Dr Taru Jain, Laura Aston Public Transport Research Group Monash Institute of Transport Studies Monash University, Australia

The research program explores long term travel impacts of C-19 using secondary evidence and two phases of primary research focussing on self reported changes in travel

Research Plan – phases and tasks

Phase 1 – Research Context

- 1.Project Inception
- 2. Literature Review
- 3. Secondary Travel Data Impact Analysis
- 4. Future Travel Impact Forecasting Approach

Phase 2 – Shutdown Field Surveys

- 5. Qualitative Survey
- 6. Quantitative Online Panel Survey
- 7. Phase 2 Analysis and Reporting

Phase 3 – Late Shutdown/Post Pandemic Field Surveys

- 8. Qualitative Survey
- 9. Quantitative Online Panel Survey
- 10. Phase 3 Analysis and Reporting

Completed

A new Framework has been developed to understand pandemic impacts on travel using MACRO, MICRO AND MESO levels of influencers

The 'Monash' Framework - An Integrated Framework of Factors Influencing Travel Behavior Before, During and After the Covid-19 Crisis.

Note: This framework is developed by the research team from a review of previous research literature and also from a workshop with staff from the Victorian Department of Transport

DISRUPTIONS are well documented in History. Evidence says short term travel impacts are large, but long term impact is between minor and a zero effect

Micro

Meso

Macro

Examples:

Key similarities with Covid-19:

Personal health concerns

> SARS (2003) MERS (2012)

- Fear/dread avoidance
- Social distancing

Disruptions Explored in Travel Behaviour Research

Security threats

> 9/11 Terror attacks (2001) London, Madrid bombings 2005

Fear/dread avoidance

Planned disruptions

> Major events (London Olympics) Infrastructure works

- Availability of options changes
- Encouragement to change travel

Unplanned disruptions

> Natural disasters Infrastructure fault **Strikes**

- Availability of options changes
- Unknown duration

Economic crisis

Global financial Crisis e.g. 2007

- Long duration
- Macro/structural impacts
- Reduced latent demand

Short Term Travel Impact

- **-25%,-35%** reduction in Metro system travel
- **-40%,-45%,-60%** reduction in rail travel
- ▶ -20% to -40% reduction in base travel
- >90% reduction in base travel during disasters
- ▶ -20% reduction in selected transit systems

Long Term Travel Impact

- ▶ Zero Long-Term Impact
- ▶ Rebound on average 28 days
- > Zero Long-Term **Impact**
- rebounded maximum was 6 months
- ► TDM impact -6% after 2 months
- Expect this effect to reduce over time

Parkes et al. 2016, Currie & Delbosc (2011)

- ▶ No Long Term Impact
- ▶ Mean time to return to normal is 7-10 days

Kontou et al 2017

Mean time to recovery was 2 years

▶ No Long Term Impact

McKinsey & Co 2020b

Source: Wang 2014, McKinsey & Co 2020a

McKinsey & Co 2020a

A large survey covers self reported travel by Covid period and Specific Issues which might affect long term travel (from the Monash framework) – using a representative sample

Online Panel Survey Questionnaire – Areas Covered

Sample Frame¹

INNER MELBOURNE (n=700)					
	Annual Personal Income , Before Tax				
	Nil Income	Total			
Age Group	Target	Target	Target	Target	Total Target
18-29	53	96	83	16	248
30 - 44	12	43	86	79	220
45 and over	12	89	62	69	232
Total	77	228	231	164	700

MIDDLE MELBOURNE (n=700)						
	Annual	Total				
Age Group	Target	Target	Target	Target	Total Target	
18-35	37	73	92	36	238	
36-54	17	43	87	90	237	
55 and over	18	107	64	37	226	
Total	72	223	243	163	701	

OUTER MELBOURNE (n=700)						
	Annual Personal Income , Before Tax					
	Nil Income	Less than	Between	More than	Total	
Age Group	Target	Target	Target	Target	Total Target	
18-35	26	87	97	24	234	
36-53	15	64	101	56	236	
54 and over	18	122	65	25	230	
Total	59	273	263	105	700	

GRAND TOTAL						
	Annua					
	Nil Income	INCOME 1	INCOME 2	INCOME 3	Total	
Age Group	Target	Target	Target	Target	Total Target	
AGE GROUP 1	116	256	272	76	720	
AGE GROUP 2	44	150	274	225	693	
AGE GROUP 3	48	318	191	131	688	
Total	208	724	737	432	2101	

Note:

(1) Quotas in a sample aim to ensure representation of the community with respect to key/influential demographic and spatial criteria.

Work from Home is MUCH more common for CBD workers; Post Pandemic WFH is expected to more than double (+117%) compared to pre-covid, much higher than for Melb as a whole (+75%)

Figure F2: Changes in Work From Home - CBD; Pre-Covid=100%

CBD Commuting

Melbourne CBD Jobs

Total Sample (All of Metropolitan Melbourne)

vote:

(1) Monash – July 2020 Online Panel Survey – 23-7-2020 sample - Self reported activity participation volume per week (2) Weighted sample; representative of total Melbourne travel

Respondents say CBD COMMUTE will reduce more than the rest of Melbourne; Post Pandemic a 19% decline in CBD COMMUTE is self estimated - much larger than for Melbourne as a whole (5%)

Figure F4: Changes in Commute Journey Volume ; Pre-Covid=100%

CBD Commuting

Time Period

Note: Time Period

(1) Monash – July 2020 Online Panel Survey – 23-7-2020 sample - Self reported CBD travel to work volume per week

(2) Weighted sample; representative of total Melbourne travel

Post-Covid CBD COMMUTE grows for Bike (+24% Pre-Covid) & Car Driver (+9%). Car Lift (-44%) PT (-31%) & Walk (-14%) reduce. CBD modes decline more than Citywide; Car Driving growth is bigger

Figure F6: Changes in Commute Journey Volume by Mode; Pre-Covid=100%

CBD Commuting

(1) Monash – July 2020 Online Panel Survey – 23-7-2020 sample - Self reported travel to work volume per week (2) Weighted sample; representative of total Melbourne travel

The general pattern of Melbourne recovery matches those of other world cities – a maximum ceiling of 80% recovery seems to hold.

Changes in International City (<u>Multi-modal</u>) Public Transport Travel by Mode by week after Recovery (shutdown) - % relative to baseline including Melbourne and Sydney

Number of weeks after the first lockdown measures have been relaxed

⁽²⁾ The text tags with percentages after the city name show the change in ridership compared to baseline in 2019

⁽¹⁾ Monash University analysis of raw data collated from Victorian Department of Transport, Transport for NSW, NZ Transport Agency, UITP.

Please reach out for more information

