Understanding the Wider Value of Honor Based Ticketing in Light Rail

Professor Graham Currie
James Reynolds

PUBLIC TRANSPORT RESEARCH GROUP
Institute of Transport Studies
Monash University, Australia

Light Rail 2016 – Transforming the urban transport landscape
Pullman Melbourne on the Park
25th February 2016

Agenda

1. Introduction
2. Research Context
3. Model Development
4. Results
5. Discussion and Conclusions
Melbourne, like most Light Rail systems, uses Honor Based or Proof-of-Payment (POP) fare collection

- Passengers must have valid ticket
- Random **ticket inspections** for enforcement
- Allows passengers to board and alight at any door

All door boarding and alighting in Melbourne, Australia

This is often criticised in the media/community because of high fare evasion rates

![Graph showing fare evasion and lost revenue](image)

Source: ITS (Monash) analysis of the Fare Evasion and Valid Concession Percentage Survey - 2011
An alternative is Pay-on-Entry (POE) fare control such as adopted in Toronto

- **Pay fare** to driver on boarding, or show valid pass, transfer etc.
- Allows close monitoring of fare payment
- Requires all passengers to board by the front door

Front Door Boarding on a Toronto Transit Commission Streetcar

The trade-offs between POE and POP on LRT have not been fully explored

<table>
<thead>
<tr>
<th>Pay-on-Entry (POE)</th>
<th>Honor Based / Proof-of-Payment (POP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pay driver</td>
<td>Pre-purchase ticket</td>
</tr>
<tr>
<td>Longer boarding times</td>
<td>Shorter boarding times</td>
</tr>
<tr>
<td>Lower fare evasion</td>
<td>Higher fare evasion</td>
</tr>
</tbody>
</table>

Fare Revenue Increases?
Operational Costs / Savings?
Capital Costs?
Fare Evasion Losses?
Operational Costs / Savings?
Capital Savings?

THIS RESEARCH:
- Develops a model of the Melbourne Tram Network to directly compare the overall financial impacts of POE with POP, and
- Investigates how:
 - Reduced fare evasion under POE fare control; compares to
 - Costs due to slower boarding times compared to Honor Based/ POP system.

Trams in Melbourne have open access, while trains and buses have more control of fare payment

Melbourne Tram Network
- Enter by any door (open access)
- No interaction with driver
- Roving ticket inspectors

Melbourne Rail Network
- Barrier gates at central stations
- Roving ticket inspectors

Melbourne Bus Network
- Enter by front door only
- Validate smartcard in front of driver
- Some roving ticket inspectors
Melbourne’s trams use the “myki” smartcard system, with passengers required to “touch on” after boarding.

Except in the FREE TRAM ZONE in the city center

Fare Evasion Trends

![Graph showing fare evasion trends in Melbourne](image-url)

Source: Public Transport Victoria Victorian Official Fare Compliance Series May 2015
Would Melbourne Trams have been better off with POE instead of the myki POP system?

The Age Newspaper: June 2010, October 2011 and June 2011

Melbourne trams vs Toronto streetcars

- Some of the largest streetcar systems in the world
 Melbourne = 167 kms (104 miles) Toronto = 71 kms (44 miles)

- Different Fare Control Systems
 Melbourne = POP Toronto = mostly POE
Melbourne vs Toronto

- **Melbourne**
 - Tickets **pre-purchased**
 - Validated during or after entry
 - **No interaction** with driver

- **Toronto**
 - Pay-on-Entry (POE) fare **paid to farebox** in front of driver
 - Pass or transfer must be shown to driver
 - **Front door boarding** only
 - Some Proof of Payment (POP) zones but on only a limited number of routes

Previous Research - Currie, Delbosc and Reynolds (2012)

- Melbourne and Toronto **dwell time** surveys
- **Regression models** developed including one with a factor for fare control type

\[
\text{Dwell time} = 3.7 + 0.9a + 0.7b + 13.4c - 6d + 3.4e + 9.8f
\]

Where:
- \(a\) = Number of boardings
- \(b\) = Number of alightings
- \(c = 1\) if 4 doors, else 0
- \(d = 1\) if platform stop, else 0
- \(e = 1\) if steps, 0 otherwise,
- \(f = 1\) if pay-on-entry, 0 otherwise

- Model implies that average dwell time for POE is **9.8 seconds higher per stop** than for POP

Model Structure - Outline

- Compares POE fare control impacts with the (existing) POP across 22 of the 26 tram routes in Melbourne
- Determines operational, ridership and fare payment impacts
- Calculates capital cost and annual revenue / cost impacts
- Uses a Discount Cash Flow Analysis to calculate a BCR of switching to POE
Overall model - Detail

Key
- Operational Impacts
- Ridership and Fare Payment Impacts
- Capital Cost Impacts
- Anticipated Revenue Cost Impacts

Pay-On-Entry (POE) fare control vs Proof-of-Payment (POP) fare control

- Longer Dwell Times - Reduction in Fare Evasion - Fewer Ticket Validation Machines
- Longer Vehicle Journey Times - Increased Fare Payment - Less Maintenance
- Increased Vehicle Requirements - Decrease in Fines Levied - Increased Revenue
- Longer Passenger Journey Times - Decreased Ridership - Decreased Revenue
- Decreased Vehicle Journey Times - Increased Operating Costs - Decreased Capital Costs
- Decreased Ridership - Better Financial Performance
- Decreased Revenue - Decreased Operating Costs
- Increased Operating Costs - Decreased Capital Costs

Agenda

1. Introduction
2. Research Context
3. Model Development
4. Results
5. Discussion and Conclusions
Impact of Conversion – Honor/POP vs POE

Savings Resulting from Pay the Driver Ticketing

Costs Resulting from Pay the Driver Ticketing

Open access saves $29M p.a. operating costs & $210M in Capital – increases ridership 10% and saves 49 LRVs

Melbourne – Open Access; Proof of Payment Ticketing

Toronto – Pay the Driver Ticketing

Aggregate Results

Financial Analysis

<table>
<thead>
<tr>
<th></th>
<th>Annual</th>
<th>Capital</th>
</tr>
</thead>
<tbody>
<tr>
<td>POE Benefits ($AU)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced fare evasion losses</td>
<td>8.1m</td>
<td></td>
</tr>
<tr>
<td>Reduced staffing costs</td>
<td>15.8m</td>
<td></td>
</tr>
<tr>
<td>Reduced maintenance of validation machines</td>
<td>3.1m</td>
<td></td>
</tr>
<tr>
<td>Fewer ticket validation machines</td>
<td></td>
<td>65.5m</td>
</tr>
<tr>
<td>POE Costs ($AU)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower fare revenue</td>
<td>17.4m</td>
<td></td>
</tr>
<tr>
<td>Lower fine revenue</td>
<td>9.2m</td>
<td></td>
</tr>
<tr>
<td>Increase vehicle operation costs</td>
<td>29.8m</td>
<td></td>
</tr>
<tr>
<td>New vehicles</td>
<td></td>
<td>276.0m</td>
</tr>
<tr>
<td>Total ($AU) Benefits – Costs</td>
<td>-29.4m</td>
<td>-210.5m</td>
</tr>
</tbody>
</table>

Discount Cash Flow Analysis

- BCR
 - 30 years at 6% discount rate 0.44

Route Based Results

- BCR of POE goes **down** as stops per kilometre goes **up**
- BCR of POE goes **up** as ridership increases
- However R^2 is < 0.2
Sensitivity Analysis

Most Sensitive to Dwell Time

Least Sensitive to Ridership and Fare

Agenda

1. Introduction
2. Research Context
3. Model Development
4. Results
5. Discussion and Conclusions
Findings

- Melbourne trams have worse financial performance under POE than POP
 - $AU27.0m annual benefits and $AU65.5m capital savings
 - But $AU56.4 annual costs and $AU276.0m capital expense
 - BCR of only 0.44
- Costs associated with longer stop dwell times far outweigh the benefits of POE for reducing fare evasion and staffing costs
- Lower levels of ridership, increased fleet size and operating costs are significant financial penalties of operating a POE fare system

Toronto – should stop using POE!...

Front Door Boarding on a Toronto Transit Commission Streetcar
... AND THEY HAVE
Join the ITS (Monash) LinkedIn group
to keep informed of our activities