

# Research Perspectives & Comments on Managing Rail Grade Crossings in Melbourne

Professor Graham Currie
PUBLIC TRANSPORT RESEARCH GROUP
Institute of Transport Studies
Monash University, Australia

8<sup>th</sup> Victorian Transport Infrastructure Conference Melbourne Convention and Exhibition Centre 28<sup>th</sup> April 2016



### **Agenda**

- 1. Introduction
- 2. Research Perspectives
- 3. Comments











# This paper provides research input to the Skyrail / rail grade separation debate...

- In relation to rail grade crossings, PTRG at Monash has been focusing on:
  - An international review of research and practice evidence
  - Measuring and Modelling transport impacts
- This paper outlines some of our early findings and provides (informed?) comment on issues such as "Skyrail"







3

### ...divided into the following sections









### **Agenda**

- 1. Introduction
- 2. Research Perspectives
- 3. Comments











. -

1. Research-practice review - urban rail-road crossings

### 1. Research-practice review - urban rail-road crossings...

AIM:To develop a holistic understanding of rail-road crossing impacts and identify key knowledge gaps in the field

Consideration given to both at-grade and grade-separated crossings





#### Source:

De Gruyter C and Currie G (Under review) 'Rail-Road Crossing Impacts: An International Synthesis' TRANSPORT REVIEWS submitted 16-11-2015

De Gruyter C and Currie G (2016) 'Impacts of Rail-Road Crossings: International Synthesis and Research Gaps' Transportation Research Board 95th Annual Meeting January 2016







### ...using a practice review methodology

#### Research method

- Detailed literature review of academic papers and industry reports relating to rail-road crossing impacts
- Key search terms used in various databases (e.g. Scopus, SPARK):
  - ✓ Rail road crossing
  - √ Highway rail crossing
  - ✓ Level crossing
  - ✓ At-grade rail crossing
  - √ Rail grade separation
- Additional literature sourced through industry representatives & snowballing
- 70 publications relevant; 28 specific to rail-road crossing impacts









1. Research-practice review - urban rail-road crossings

### 18 types of impacts identified in total

#### **Transport & Economic** Social

- 1. Safety (accidents)
- 2. Road vehicle delay
- 3. Traffic volume changes
- 4. Accessibility/connectivity
- 5. Rail vehicle delay
- 6. Vehicle operating costs
- 7. Crossing operation costs
- 8. Grade separation costs

- 1. Community cohesion
- 2. Land use (acquisition, value)
- 3. Geographic distribution
- 4. Noise (traffic, trains)
- 5. Crime
- 6. Visual amenity
- 7. Sites of social significance

#### **Environmental**

- 1. Air quality (emissions)
- 2. Water quality
- 3. Sites of environmental significance



Source: De Gruyter C and Currie G (2016) 'Impacts of Rail-Road Crossings: International Synthesis and Research Gaps' Transportation Research Board 95th Annual Meeting January 2016







Transport & economic impacts have received the most

research attention

Source: De Gruyter C and Currie G (2016) 'Impacts of Rail-Road Crossings: International Synthesis and Research Gaps' Transportation Research Board 95th Annual Meeting January 2016





1. Research-practice review - urban rail-road crossings

### But there is little quantitative understanding of social & environmental impacts



Source: De Gruyter C and Currie G (2016) 'Impacts of Rail-Road Crossings: International Synthesis and Research Gaps' Transportation Research Board 95th Annual Meeting January 2016







### Take home messages

- Rail-road crossings generate a range of transport, economic, social and environmental impacts
- 18 types of impacts were identified through a detailed literature review
- Transport & economic impacts have received the most attention mostly road safety
- There is little quantitative understanding of social & environmental impacts, limiting their prominence in cost benefit analyses
- 10 key research gaps were identified to provide a clear agenda for future research into rail-road crossings







11

2. Measuring Impacts of Grade Crossing Removal

### 2. Measuring Impacts of Grade Crossing Removal

- Several projects in this area including
  - research by Dr Chris De Gruyter and VicRoads on the before and after effects of grade crossing removal on traffic
  - Also research by PhD Phuoc Quy Duy Nguyen who is studying how PT acts to reduces and also create traffic congestion in Melbourne
    - Including modelling of at grade rail crossing impacts on traffic





## Before/after studies suggest 15-18% growth in traffic AFTER grade crossing removed...

- Increases in traffic volume on grade-separated road (up to 18% in AM peak)
- Decreases in traffic volumes on parallel (competing) routes
- Overall, slight increase in traffic volume (2-3%) across all sites in the local area
- Reductions in total travel times and travel time variability on key routes



Data source: VicRoads (2010) Nunawading Springvale Road Rail Separation Impact Study







13

2. Measuring Impacts of Grade Crossing Removal

# ...impacts are network wide and involve much diversion from major roads

Figure 1: Changes in traffic volumes before (May 2009) and after (May 2010) grade separation of rail line at Springvale Road, Nunawading



Source: De Gruyter C (2015) 'Springvale Road Nunawading Grade Separation – Data Analysis Summary' Public Transport Research Group Working Paper 2 September 2015







### ...but an overall improvement in travel time results

Figure 4: Relationship between travel times and traffic volumes before and after grade separation of the rail line



Source: De Gruyter C (2015) 'Springvale Road Nunawading Grade Separation – Data Analysis Summary' Public Transport Research Group Working Paper 2 September 2015







16

2. Measuring Impacts of Grade Crossing Removal

### Modelling aims to understand delays to traffic from grade crossings using the Victorian Integrated Transport Model ...and...



VITM road network & 177 crossings

Source: PhD research of Phuoc Quy Duy Nguyen







#### ...Traffic Microsimulation Models...



Modelled change in traffic travel time by Rail service frequency at grade crossings



Localised variation in traffic travel time delay caused by at grade rail crossings

Source: PhD research of Phuoc Quy Duy Nguyen







17

2. Measuring Impacts of Grade Crossing Removal

#### ...overall modelled impact of rail grade crossing removal is SMALL...

TABLE 4 Overall impact of at-grade rail crossings on Melbourne's road network weekday (7am-9am)

| Measure                                               | Base Case<br>No at-grade rail<br>crossing | Have at-<br>grade rail<br>crossing | Absolute<br>change | Change<br>(%) |
|-------------------------------------------------------|-------------------------------------------|------------------------------------|--------------------|---------------|
| Number of severely congested links (V/C>=0.9)         | 2,118.0                                   | 2,155.0                            | 37                 | 1.7           |
| Number of moderately congested links (0.9>V/C>=0.8)   | 2,018.0                                   | 2,018.0                            | 0                  | 0.0           |
| Length of congestion links (km)                       | 1,181.7                                   | 1,189.8                            | 8.1                | 0.7           |
| Congested link (%)                                    | 9.2                                       | 9.3                                | 0.1                | 0.1           |
| Congested lane (%)                                    | 16.7                                      | 16.9                               | 0.2                | 0.1           |
| Number of vehicles experiencing congestion (millions) | 16.83                                     | 16.96                              | 0.13               | 0.7           |
| Vehicle distance travelled (millions veh-km)          | 15.00                                     | 15.00                              | 0                  | 0.0           |
| Vehicle time travelled (millions veh-hr)              | 0.380                                     | 0.381                              | 0.001              | 0.3           |
| Total delay on roadway (millions veh-hr)              | 22.62                                     | 22.68                              | 0.06               | 0.3           |
| Average travel time speed (km/h)                      | 48.1                                      | 48.0                               | -0.1               | -0.1          |
| Actual travel time per km (min)                       | 1.81                                      | 1.82                               | 0.01               | 0.3           |

Source: PhD research of Phuoc Quy Duy Nguyen







### ...but a small number experience EXTREME DELAY removal

FIGURE 8 Distribution of travel time change of vehicles due to at-grade rail crossings



Source: PhD research of Phuoc Quy Duy Nguyen







19

### **Agenda**

- 1. Introduction
- 2. Research Perspectives
- 3. Comments









# Current evaluation method doesn't work for grade separations and EXTREME DELAY

FIGURE 8 Distribution of travel time change of vehicles due to at-grade rail crossings



| Boom gate Rail line      |                     | Suburb         | Maximum minutes                      | Percentage of                      |  |
|--------------------------|---------------------|----------------|--------------------------------------|------------------------------------|--|
|                          | Road                |                | boom gates are<br>down between 7.00- | peak period that<br>boom gates are |  |
|                          |                     |                | 9.00am weekdays                      | down                               |  |
| Cranbourne -<br>Pakenham | Grange Road         | Caulfield East | 55                                   | 45.8%                              |  |
|                          | Koornang Road       | Carnegie       | 87                                   | 72.5%                              |  |
|                          | Murrumbeena<br>Road | Murrumbeena    | 75                                   | 62.5%                              |  |
|                          | Poath Road          | Hughesdale     | 72                                   | 60%                                |  |
|                          | Clayton Road        | Clayton        | 82                                   | 68.3%                              |  |
|                          | Centre Road         | Clayton        | 75                                   | 62.5%                              |  |
|                          | Corrigan Road       | Noble Park     | 72                                   | 60%                                |  |
|                          | Heatherton Road     | Noble Park     | 73                                   | 60.8%                              |  |
|                          | Chandler Road       | Noble Park     | 67                                   | 55.8%                              |  |
| Frankston                | North Road          | Ormond         | 30                                   | 25%                                |  |
|                          | McKinnon Road       | McKinnon       | 48                                   | 40%                                |  |
|                          | Centre Road         | Bentleigh      | 38                                   | 31.6%                              |  |
| Glen Waverley            | Burke Road          | Glen Iris      | 40                                   | 33.3%                              |  |
| Belgrave                 | Blackburn Road      | Blackburn      | 54                                   | 45%                                |  |
|                          | Heatherdale Road    | Ringwood       | 66                                   | 55%                                |  |
| Sunbury                  | Furlong Road        | St Albans      | 35                                   | 29.1%                              |  |
|                          | Main Road           | St Albans      | 65                                   | 54.1%                              |  |

Source: PhD research of Phuoc Quy Duy Nguyen

Source: Daniel Andrews Media Release "Data on Victoria's Worst Level Crossings Revealed" Thursday 7 May 2015







21

# We can be a lot smarter in managing existing grade crossings











# We don't understand social, crime, streetscape and planning impacts – critical project issues











23

# Grade crossing removal is an opportunity to revolutionise Melbourne rail reliability



Instrumented Freight Rollingstock & Track



Significant Rebuilding of Track Sections Throughout Melbourne







### 'Skyrail' is ugly - no wonder some don't like it









25

### Its time to have an ecological & attractive solution



Swimming in Port Phillip Bay – not likely in future due to Melbourne Urban Water Quality



Melbourne development is reducing biodiversity – a major challenge to future liveability





### Its time to GREEN the grade separation program and 'Skyrail' in particular

**Passive Urban Water Treatment Technologies** 



Urban Street Raingarden -Research suggest they substantially increase home values - a financially viable project











#### About World Transit Research

World Transit Research (WTR) is designed to help public transport practitioners and researchers get easier access to quality research in the field of public transport planning. WTR is a free repository of research papers, reports, research abstracts and links to research findings from leading research journals indexed and searchable to ensure easier access to topics of interest. The site is developed and run by the Public Transport Research Group at the Institute of Transport Studies, Monash University.

#### Browse Research

Subject Areas

Authors Titles

www.worldtransitresearch.info

#### At a Glance

Top 10 Downloads All time

Recent Additions 20 most recent additions

A case study of flexible solutions to transport demand in a deregulated enviro Jenny Brake and John D. Nelson

🕒 full-text downloads to date 🔃 downloads in the past year

Advanced Search Newsletter Enter email here Sign Up Related Sites **Author Corner** 



Home | About | FAQ | My Account | Accessibility Statement

Institute of Transport Studies (Monash)

Disclaimer | Privacy | Copyright







MONASH University

**PTRG.INFO** 

PUBLIC TRANSPORT RESEARCH GROUP

29

Join the ITS (Monash) LinkedIn group to keep informed of our activities

# Linked in













